Study of Existence and uniqueness of solution of abstract nonlinear differential equation of finite delay

Rupesh T. More and Vijay B. Patare *
Department of Mathematics, Arts, Commerce and Science College, Bodwad, Jalgaon-425 310, India
rupeshmore82@gmail.com
* Department of Mathematics, Nutan Mahavidyalaya ,Sailu, Sailu-431503, India vijaypatare30@gmail.com

Abstract

In this paper, we study the existence and uniqueness of solution of differential equation of finite delay with nonlocal condition in cone metric space. The result is obtained by using the some extensions of Banach's contraction principle in complete cone metric space.

1 Introduction

The purpose of this paper is study the existence and uniqueness of solution of inhomogeneous semilinear evolution equation with nonlocal condition in cone metric space of the form:

$$
\begin{align*}
x^{\prime}(t) & =A x(t)+f(t, x(t), x(t-1)), \quad t \in J=[0, b] \tag{1.1}\\
x(t-1) & =\psi(t) \quad 0 \leq t<1 . \tag{1.2}\\
x(0)+g(x) & =x_{0}, \tag{1.3}
\end{align*}
$$

where A is an infintesimal generator of strongly continuous semigroup of bounded linear operator $\mathrm{T}(\mathrm{t})$ in X with domain $D(A)$, the unknown $x(\cdot)$ takes values in the Banach space $X ; f: J \times X \times X \rightarrow X, g: C(J, X) \rightarrow X$ are appropriate continuous functions and x_{0} is given element of $X . \psi(t)$ is a continuous function for $0 \leq t<1, \lim _{t \rightarrow 1-0} \psi(t)$ exists, for which we denote by $\psi(1-0)=c_{0}$. if we observed a function $x(t-1)$ which is unable to define as solution for $0 \leq t<1$. Hence, we have to impose some condition, for example the condition (1.2). We note that, if $0 \leq t<1$, the problem is reduced to integrodifferential equation

$$
x^{\prime}(t)=A x(t)+f(t, x(t), \psi(t))
$$

with initial condition $x(0)+g(x)=x_{0}$. Here, it is essential to obtain the solutions of (1.1) 1.3 for $0 \leq t<b$.

IJISET - International Journal of Innovative Science, Engineering \& Technology, Vol. 4 Issue 6, June 2017
www.ijiset.com

The objective of the present paper is to study the existence and uniqueness of solution of the evolution equation (1.1-1.3) under the conditions in respect of the cone metric space and fixed point theory. Hence we extend and improve some results reported in [6].

The paper is organized as follows: we discuss the preliminaries. we dealt with study of existence and uniqueness of solution of inhomogeneous evolution equation with nonlocal condition in cone metric space.

2 Preliminaries

Let us recall the concepts of the cone metric space and we refer the reader to [1, 2, 3, 4, 5, 6] for the more details.

Let E be a real Banach space and P is a subset of E. Then P is called a cone if and only if,

1. P is closed, nonempty and $P \neq\{0\}$;
2. $a, b \in \mathbb{R}, a, b \geq 0, x, y \in P \Rightarrow a x+b y \in P$;
3. $x \in P$ and $-x \in P \Rightarrow x=0$.

For a given cone $P \subset E$, we define a partial ordering relation \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We shall write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{int} P$, where int P denotes the interior of P.

The cone P is called normal if there is a number $K>0$ such that $0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$, for every $x, y \in E$. The least positive number satisfying above is called the normal constant of P.

In the following we always suppose E is a real Banach space, P is a cone in E with int $P \neq \phi$, and \leq is partial ordering with respect to P.

Definition 2.1 Let X be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow E$ satisfies:
$\left(d_{1}\right) 0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
$\left(d_{2}\right) d(x, y)=d(y, x)$, for all $x, y \in X ;$
$\left(d_{3}\right) d(x, y) \leq d(x, z)+d(z, y)$, for all $x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space. The concept of cone metric space is more general than that of metric space.

The following example is a cone metric space, see [?].

IJISET - International Journal of Innovative Science, Engineering \& Technology, Vol. 4 Issue 6, June 2017

Example 2.2 Let $E=\mathbb{R}^{2}, P=\{(x, y) \in E: x, y \geq 0\}, X=\mathbb{R}$, and $d: X \times X \rightarrow E$ such that $d(x, y)=(|x-y|, \alpha|x-y|)$, where $\alpha \geq 0$ is a constant. Then (X, d) is a cone metric space.

Definition 2.3 Let X be a an ordered space. A function $\Phi: X \rightarrow X$ is said to a comparison function if for every $x, y \in X, x \leq y$, implies that $\Phi(x) \leq \Phi(y), \Phi(x) \leq x$ and $\lim _{n \rightarrow \infty}\left\|\Phi^{n}(x)\right\|=0$, for every $x \in X$.

Example 2.4 Let $E=\mathbb{R}^{2}, P=\{(x, y) \in E: x, y \geq 0\}$. It is easy to check that Φ : $E \rightarrow E$, with $\Phi(x, y)=(a x, a y)$, for some $a \in(0,1)$ is a comparison function. Also if Φ_{1}, Φ_{2} are two comparison functions over \mathbb{R}, then $\Phi(x, y)=\left(\Phi_{1}(x), \Phi_{2}(y)\right)$ is also a comparison function over E.

3 Existence and uniqueness of solution

Let X is a Banach space with norm $\|\cdot\|$. Let $B=C(J, X)$ be the Banach space of all continuous functions from J into X endowed with supremum norm

$$
\|x\|_{\infty}=\sup \{\|x(t)\|: t \in J\}
$$

Let $P=\{(x, y): x, y \geq 0\} \subset E=\mathbb{R}^{2}$ be a cone and define $d(f, g)=\left(\|f-g\|_{\infty}, \alpha\|f-g\|_{\infty}\right)$, for every $f, g \in B$. Then it is easily seen that (B, d) is a cone metric space.

Definition 3.1 The function $x \in B$ satisfies the integral equation case \boldsymbol{I} :for $0 \leq t<1$

$$
\begin{equation*}
x(t)=T(t)\left[x_{0}-g(x)\right]+\int_{0}^{1} T(t-s) f(s, x(s), x(s-1)) d s \tag{3.1}
\end{equation*}
$$

case II :for $1 \leq t<b$

$$
\begin{align*}
x(t) & =T(t)\left[x_{0}-g(x)\right]+\int_{0}^{1} T(t-s) f(s, x(s), x(s-1)) d s \\
& +T(t)\left[x_{0}-g(x)\right]+\int_{1}^{t} T(t-s) f(s, x(s), x(s-1)) d s \tag{3.2}
\end{align*}
$$

is called the mild solution of the evolution equation (1.1)-1.3).

We need the following lemma for further discussion:
Lemma 3.2 [5] Let (X, d) be a complete cone metric space, where P is a normal cone with normal constant K. Let $f: X \rightarrow X$ be a function such that there exists a comparison function $\Phi: P \rightarrow P$ such that

$$
d(f(x), f(y)) \leq \Phi(d(x, y))
$$

for every $x, y \in X$. Then f has a unique fixed point.

We list the following hypotheses for our convenience:
$\left(H_{1}\right) A$ is an infintesimal generator of strongly continuous semigroup of bounded linear operator $\mathrm{T}(\mathrm{t})$ in X for each $t \in J$, and hence there exists a constant K such that

$$
K=\sup _{t \in J}\|T(t)\|
$$

$\left(H_{2}\right)$ Let $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a comparison function.
(i) There exists continuous function $p_{1}, p_{2}: J \rightarrow \mathbb{R}^{+}$such that case I :for $0 \leq t<1$

$$
\begin{gathered}
(\|f(t, x(t), \psi(t))-f(t, y(t), \psi(t))\|, \alpha\|f(t, x(t), \psi(t))-f(t, y(t), \psi(t))\|) \\
\quad \leq p_{1}(t) \Phi(d(x, y)),
\end{gathered}
$$

case II :for $1 \leq t<b$

$$
\begin{gathered}
(\|f(t, x(t), x(t-1))-f(t, y(t), y(t-1))\|, \alpha\|f(t, x(t), x(t-1))-f(t, y(t), y(t-1))\|) \\
\leq p_{2}(t) \Phi(d(x, y)), \\
(\|g(x)-g(y)\|, \alpha\|g(x)-g(y)\|) \leq G \Phi(d(x, y)),
\end{gathered}
$$

for every $t \in J$ and $x, y \in X$.
$\left(H_{3}\right) \sup _{t \in J}\left[K G+\int_{0}^{t} K\left[p_{1}(s)+p_{2}(s)\right] d s\right]=1$.

Theorem 3.3 Assume that hypotheses $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then the evolution equation (1.1)-(1.2) has a unique solution x on J.

Proof: The operator $F: B \rightarrow B$ is defined by
case I :for $0 \leq t<1$

$$
\begin{equation*}
F x(t)=T(t)\left[x_{0}-g(x)\right]+\int_{0}^{1} T(t-s) f(s, x(s), x(s-1)) d s \tag{3.3}
\end{equation*}
$$

case II :for $1 \leq t<b$

$$
F x(t)=T(t)\left[x_{0}-g(x)\right]+\int_{0}^{1} T(t-s) f(s, x(s), x(s-1)) d s
$$

$$
\begin{equation*}
+T(t)\left[x_{0}-g(x)\right]+\int_{1}^{t} T(t-s) f(s, x(s), x(s-1)) d s \tag{3.4}
\end{equation*}
$$

By using the hypotheses $\left(H_{1}\right)-\left(H_{3}\right)$, we have
case \mathbf{I} :for $0 \leq t<1$

$$
\begin{align*}
&(\|F x(t)-F y(t)\|, \alpha\|F x(t)-F y(t)\|) \\
& \leq\left(\|T(t)\|\|g(x)-g(y)\|+\int_{0}^{1}\|T(t-s)\|\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\| d s\right. \\
&\left.\alpha\|T(t)\|\|g(x)-g(y)\|+\alpha \int_{0}^{1}\|T(t-s)\|\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\| d s\right) \\
& \leq\|T(t)\|(\|g(x)-g(y)\|, \alpha\|g(x)-g(y)\|) \\
&+\int_{0}^{t} K(\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\|, \alpha\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\|) d s \\
& \leq K G \Phi(\|x-y\|, \alpha\|x-y\|)+\int_{0}^{t} K p_{1}(s) \Phi(\|x(s)-y(s)\|, \alpha\|x(s)-y(s)\|) d s \\
& \leq K G \Phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right)+\Phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right) \int_{0}^{t} K p_{1}(s) d s \\
& \leq K G \Phi(d(x, y))+\Phi(d(x, y)) \int_{0}^{t} K p_{1}(s) d s \\
& \leq \Phi(d(x, y))\left[K G+\int_{0}^{t} K p_{1}(s) d s\right] \\
& \leq \Phi(d(x, y))\left[K G+\int_{0}^{t} K\left[p_{1}(s)+p_{2}(s)\right] d s\right] \\
& \leq \Phi(d(x, y)) \tag{3.5}
\end{align*}
$$

By using the hypotheses $\left(H_{1}\right)-\left(H_{3}\right)$, we have
case II :for $1 \leq t<b$

$$
\begin{aligned}
& (\|F x(t)-F y(t)\|, \alpha\|F x(t)-F y(t)\|) \\
& \leq(\|T(t)\|\|g(x)-g(y)\|+\|T(t-s)\| \\
& \quad \times\left[\int_{0}^{1}\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\| d s+\int_{1}^{t}\|f(s, x(s), x(s-1))-f(s, y(s), y(s-1))\| d s\right] \\
& \quad \alpha\|T(t)\|\|g(x)-g(y)\|+\alpha\|T(t-s)\| \\
& \left.\quad \times\left[\int_{0}^{1}\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\| d s+\int_{1}^{t}\|f(s, x(s), x(s-1))-f(s, y(s), y(s-1))\| d s\right]\right) \\
& \leq\|T(t)\|(\|g(x)-g(y)\|, \alpha\|g(x)-g(y)\|) \\
& \quad+\int_{0}^{1} K(\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\|, \alpha\|f(s, x(s), \psi(s))-f(s, y(s), \psi(s))\|) d s
\end{aligned}
$$

IJISET - International Journal of Innovative Science, Engineering \& Technology, Vol. 4 Issue 6, June 2017

$$
\begin{align*}
& +\int_{1}^{t} K(\|f(s, x(s), x(s-1))-f(s, y(s), y(s-1))\|, \alpha\|f(s, x(s), x(s-1))-f(s, y(s), y(s-1))\|) d s \\
\leq & K G \Phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right)+\Phi\left(\|x-y\|_{\infty}, \alpha\|x-y\|_{\infty}\right)\left[\int_{0}^{1} K p_{1}(s) d s+\int_{1}^{t} K p_{2}(s) d s\right] \\
\leq & K G \Phi(d(x, y))+\Phi(d(x, y))\left[\int_{0}^{1} K\left(p_{1}(s)+p_{2}(s)\right) d s+\int_{1}^{t} K\left(p_{1}(s)+p_{2}(s)\right) d s\right] \\
\leq & \Phi(d(x, y))\left[K G+\int_{0}^{t} K\left[p_{1}(s)+p_{2}(s)\right] d s\right] \\
\leq & \Phi(d(x, y)) \tag{3.6}
\end{align*}
$$

for every $x, y \in B$. This implies that $d(F x, F y) \leq \Phi(d(x, y))$, for every $x, y \in B$. Now an application of Lemma 3.2, the operator has a unique point in B. This means that the equation (1.1)-(1.2) has unique solution. This completes the proof of the Theorem 3.3.

References

[1] M. Abbas and G. Jungck; Common fixed point results for noncommuting mappings without continuity in cone metric spaces, Journal of Mathematical Analysis and Applications, Vol. 341, (2008), No.1, 416-420.
[2] J. Banas; Solutions of a functional integral equation in $\mathrm{BC}\left(\mathbb{R}_{+}\right)$, International Mathematical Forum, 1(2006), No. 24, 1181-1194.
[3] H. L. Tidke and R.T. More, Existence and uniqueness of solution of integrodifferential equation in cone metric spaces, SOP TRANSCATIONS ON APPLIED MATHEMAT$I C S$, In press , (2014), ISSN (Print)2373-8472.
[4] H. L. Tidke and R.T. More,Existence And Osgood Type Uniqueness Of Mild Solutions Of Nonlinear Integrodifferential Equation With Nonlocal Condition, International Journal of Pure and Applied Mathematics,(2015),Volume 104 No. 3 ,437-460 ISSN: 13118080 (printed version); ISSN: 1314-3395 (on-line version)
[5] P. Raja and S. M. Vaezpour; Some extensions of Banach's contraction principle in complete cone metric spaces, Fixed Point Theory and Applications, Volume 2008, Article ID 768294, 11pages.
[6] H. L. Tidke and R.T. More,On an abstract nonlinear differential equations with nonlocal condition, Proceeding of National Conference on "Recent Applications of Mathematical Tools in Science and Technology (RAMT-2014)" organized by Department of Physics, Chemistry \& Mathematics, Government College of Engineering, Amravati during May 8-9, 2014, Session-III, 47-50.

